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'I Chapter 1 ]
INTRODUCTION
: - The compression ignition (CI) engine is thriving in new i j
rl found popularity amongst automobiles, medium-duty and
i heavy-duty freight transport trucks, marine propulsion and
i= auxiliary systems, and various other industrial ‘
applications. The United States Department of Energy (DOE) 1
has recently predicted that diesel fuel consumption will
exceed gasoline consumption in this country by the year o

2000, This is primarily due to the shift to diesel power in
the automotive and truck freight transport industries to
take advantage of the high efficiency, high power-to-weight
ratio engines. The present daily diesel fuel consumption of
the order of 108 liters{l}? is expected to increase by as

much as 50 percent by the turn of the century. The

increasing fuel consumption rate, coupled with the constant
concern of diminishing o¢il reserves, has prompted renewed
interest in improving the operating efficiency of the
conventional compression ignition engine, Any small
improvement in engine efficiency will obviously result in an ;

enormous savings in petroleum,

bt
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The approaches currently pursued to improve compression
ignition engine efficiency include increasing the
compression ratio and the development of the "adiabatic”
engine. The former involves turbocharging and the
improvement to piston ring technology. The latter approach
concentrates the most emphasis on insulating the engine.
This requires the use of temperature-resistant ceramic
cylinder liners for combustion cylinders whose gas wall
temperatures can be of the order ot 1200 degrees Kelvin. 1In
addition to these two approaches, there are many other
avenues of research in progress that involve improvements
that will increase the compression ratio, decrease the heat
loss from the engine, or increase the combustion efficiency

through improved combustion chamber design.

Instead of improving upon the conventional compression
ignition engine, a new «cycle engine design 1is under
development. This new design, proposed by Carmichael{z},
consists of a two cylinder cycle which divides the functions
of a conventional four-stroke diesel cycle into two parts.
The new engine has one c¢ylinder which compresses the
incoming air charge and another cylinder which acts as the

combustion chamber and expansion cylinder. These two

cylinders are interconnected by a regenerative heat

exchanger., The regenerator acts as the heart of the new
design. Through the use of new ceramic materials, the

regenerator will act as a heat transfer medium by

-9
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transfering a portion of the heat from the exhaust gases to
the incoming air charge. The temperature of the incoming
air will be elevated twice., The first temperature increase
is due to the compression process in the first cylinder.
This cylinder, in turn, will transfer its air charge through
the ceramic matrix of the regenerative heat exchanger, thus

boosting the temperature for the second time. After passing

" through the regenerator, the incoming air charge will be of

sufficient temperature to accomodate spontaneous combustion.
With this high temperature, the high compression ratio of
the conventional compression ignition engine is not required
to obtain work from the cycle. Figures 1 and 2 depict the
pressure vs., volume and temperature vs. volume diagrams for
the new cycle as compared to a conventional diesel cycle.
The preliminary design of this new two cylinder cycle engine

indicates that an improvement to thermal efficiency can be
achieved over the conventional compresSion ilgnition engine.

An important element of the engine design process is
the capability to predict, with an acceptable degree of
accuracy, the energy release during combustion as a function
of time. This process is extremely complex in that it
involves the injection and atomization of fuel, the
evaporation and mixing of the fuel with the air charge,
followed by the various phases of combustion. The ability
to accurately predict the heat release rate is vital to the

engine designer when analyzing a new engine design.

«10=
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This thesis is an attempt to assimilate various diesel

. engine combustion models to produce a simple, yet accurate,
model to be used in the continuing evaluation of the new two
cylinder cycle reciprocating engine. The proposed model can

be utilized on a personal computer system to determine the

optimum point of fuel injection for the new engine. The
model has the capability to evaluate two different fuel

ia types (i e. iso-octane and propane).
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Chapter 2
DESCRIPTION OF THE TWO CYLINDER CYCLE

RECIPROCATING ENGINE

The Two Cylinder Cycle Reciprocating Engine consists of
one compression cylinder and a pair of combustion/expansion
cylinders, see figures 3 and 4. The compression cylinder
consists of an intake valve and two exhaust valves, one to
each expansion cylinder, Each expansion cylinder has its
own fuel injector. The regenerator cavity contains an
exhaust valve in addition to the ceramic matrix regenerator.
The pistons of both the compression cylinder and the
expansion cylinders are considered to be of simple geometry
with flat heads. The expansion cylinder piston incorporates
no unique features to increase turbulence or swirl, thus it
is similar to a direct injection, quiescent chamber diesel
engine cylinder. The five valves and three pistons are
actuated by a camshaft that allows the compression piston to
operate at twice the speed of an expansion piston. The
compression cylinder will alternately provide a compressed
air charge to each expansion cylinder via the regenerator,

A typical cycle can be illustrated by referring to figures 3

and 4.
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Step l: The compression cylinder is at top dead center
(TDC) and has just completed transfering an air charge to
cylinder A. Cylinder A is just starting an expansion stroke
and cylinder B is just starting an exhaust stroke., Valve 1l
is closed, valve 2A just closed, valve 3B just opened,

valves 2B and 3A are already closed,

Step_2: The compression cylinder is approximately 90°
ATDC and in the middle of an air charge induction. Cylinder
A is still in the expansion process and cylinder B is still
exhausting., Valve 1 is open, valves 2A, 3A, 2B are closed

and valve 3B is open.

Step 3

center (BDC) and has completed induction of an air charge.

The compression cylinder is at botton dead

Cylinder A is still expanding and cylinder B is exhausting
through the regenerator. Valve 1 just closed, valves 2A,

3A, 2B are closed and valve 3B is still open.

Step 4: The compression cylinder is approximately 90°
BTDC and in the middle of compressing the air charge.
Cylinder A is ending its expansion stroke and cylinder B is
completing its exhaust stroke. Valve 1 is closed, valves

2A, 3A and 2B are closed, valve 3B is still open.

Step 5: The compression cylinder has just reached TDC
and has just completed an impulse air charge transfer to
cylinder B through the regenerator. Cylinder A has just
commenced its exhaust stroke. Valve 1 is closed, valve 2B

~13-
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has just closed (it only opened for a very short time just

before the compression cylinder reached TDC), valve 3A just
opened, valves 2A and 3B are closed. (This is the same as

step 1 except that cylinders A and B are reversed.)

Step 6: The compression cylinder is apptoxiﬁately 90°
ATDC and is in the middle of an air charge induction.
Cylinder A is still exhausting and cylinder B is in the
expansion process. Valve 1 is open, valves 2B, 3B, 2A are
closed and valve 3A is open. (This is the same as step 2

except that cylinders A and B are reversed.)

Step 7: The compression cylinder has just reached BDC
and has completed induction of an air charge. Cylinder A is
exhausting through the regenerator and cylinder B is still
expanding. Valve 1 just closed, valves 2B, 3B, 2A are
closed and valve 3A is open. (This is the same as sté§ 3

except that cylinders A and B are reversed.)

Step 8: The compression stroke is approximately 90°
BTDC and in the middle of compressing an air charge.
Cylinder A is completing its exhaust stroke and cylinder B
is ending its expansion stroke. Valve 1 is closed, valve
2B, 3B and 2A are closed, valve 3A is still open. (This is
the same as step 4 except that cylinders A and B are

reversed.)

-14-
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Step 9: This is the same as step 1.

Figures 5 and 6 show the temperature and pressure as a

function of cylinder volume for a cycle.

The table below summarizes the sequencing of the valves

for a complete cycle of an expansion cylinder.

: Iable 1: Sequencing of Valves
t Valve
1 2A 3A 2B 3B
Step 1: X X X X o
Step 2: o} X X X 0
Step 3: X X X X 0
Step 4: X X X X 0
Step 5: X X ) X x
- Step 6: 0 X (0] X X

Step 7: X X 0 X X
Steg 8: X X 0 X X
Step 9: X p X X 0

where X = Valve closed

and O = Valve open

As can be readily seen, the valve timing sequence is
rather complex. The timing sequence must be such as to

allow the impulse transfer of the air charge to occur

-15-
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without possible‘blow—down to the atmosphere or charging the

wrong cylinder. A shift of the crank angle must be
considered to optimize the air charge transfer sequence to
the on-line expansion cylinder. Thus, the valve timing
sequence is a critical factor in the correct and efficient
operation of this new engine design and must be dealt with

appropriately.

L 4 dmasaca.a xd



Chapter 3
COMBUSTION AND COMBUSTION MODELING

(An overview)

3.1 ioti ¢ Diesel Engine Coml .

The diesel engine combustion process is exceedingly
complex and not very well understood. Combustion in the
diesel engine is characterized by compression ignition, a
non-uniform fuel and air distribution in the combustion
chamber, and a continuous mixing throughout the period in
which combustion occurs. Due to the initial conditions in
the chamber when fuel is first injected, the air charge in
the cylinder is of sufficient temperature and pressure to
support a chain-reaction. However, combustion in the
compression ignition engine is governed by the 1local
conditions in each part of the charge and not dependent on
the séread of the flame from one point to another.
Therefore, the rate of combustion is dependent on the state
and distribution of the fuel and upon the pressure and

temperature within the cylindet.{3}

3.1.1 The Phases of Combusgtion

-17-




Ricardo described the diesel engine combustion process
as taking place in three stages; namely the delay period, a
period of rapid combustion, followed by burning at a
controlled rate.{3} Lyn{4} described the burning process in
three slightly different phases. The first phase is a
period of rapid combustion which lasts for only three
degrees crank angle. The second stage is characterized by a
decreased rate of heat release lasting approximately 40
degrees crank angle. The third period consists of the fuel
burning at a very slow rate which may persist through the

remainder of the expansion stroke.

A combination of the descriptions of Ricardo and Lyn
may be more appropriate. The stages of combustion could be
divided into ignition delay, premixed burning, diffusion
controlled combustion and the tail of combustion. (376}
Figure 7 depicts the four stages of combustion in a heat

release diagram.

3,1.1.1 1Ignition Delay

The term ignition delay, or ignition lag, describes the
time required by the preliminary reactions that occur prior
to the appearance of flame. The ignition delay is broken
down into a physical delay and a chemical delay. The
physical delay period occurs between the beginning of fuel
injection and the onset of chemical reactions., During this

period, the fuel is atomized, vaporized, mixed with air and

-18
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raised in temperature, This process is sometimes
collectively referred to as preparation, The chemical
delay period immediately follows the physical delay period
and terminates at inflammation or ignition. This period is
characterized by chemical reactions starting slowly with

pre-flame oxidation of the fuel followed by local ignition.

The ignition delay will vary according to cylinder
temperature, cylinder pressure, the type of fuel, the
initial temperature of the fuel, the characteristics of the
fuel injectors and the turbulence in the cylinder. The
physical delay is small for light fuels but can become the
controlling factor for heavy, viscous fuels. The physical
delay can be significantly reduced by using high injection
pressures and high turbuleﬁce to expedite the breakup of the

fuel jet,

Semi~-empirical relationships have been developed to
describe the ignition delay. An estimate for igniton delay
was developed by Wolfer in 1938:{7}

t = 0.44P 1+ %xp(4650/T)
where: t = ignition delay in milliseconds
P = cylinder pressure in atmospheres

and T = temperature in degrees K at

ignition.
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An estimate by Clarkefs} in 1970 is quite similar to that by
Wolfer:
t = 0.22exp(5500/T)p~0-77
where: t = ignition delay in seconds
T = cylinder temperature in degrees K
and P = cylinder pressure in Wl

Still another empirical expression for ignition delay was developed
by Spadaccini and Tevelde!®’ from experiments for NASA in 1979 with
diesel fuel in a steady flow facility:

t = 2.43x10P 2exp(41560/RT)
where t = ignition delay in seconds
P = pressure in atmospheres
T = mixture temperature in degrees K
and R = gas constant in atm au/gmole®K.

Figure 8 represents the effects of temperature and pressure on ignition
delay as determined fram the estimates by Wolfer. The Spadaccini and
Tevelde and Clarke relationships yield somewhat similar results.

When using ignition delay expressions, it must be emphasized that
differences in engines, fuel properties (especially cetane number), fuel
injectors and actual engine temperatures and pressures make the
calculation rather approximate. These formulas are also very limited by
their use of bulk temperatures, with no consideration of local

compositions or temperatures. {10}
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3.1.1.2 Premixed Burning

In the premixed burning stage, flame occurs at one or more
locations and spreads turbulently. The rate and amount of combustion
during this stage is directly related to the fuel preparation rate and
the length of the ignition delay period. Since this stage of combustion
is one of premixed combustion, little carbon (soot) is produced
resulting in little radiation heat transfer. However, since the
combustion rate is so intense, combustion generated noise is controlled
by this stage of canbustion.{n} Figure 9 depicts premixed burning in a
cylinder.

3.1.1.3 Diffugion Controlled Burning

Once the prepared, or premixed, fuel has burned, the combustion
process slows down. The combustion rate in this stage will be dominated
by the rate of local air entraimment. Since the temperature in the
cylinder is favorable for ignition in this stage, the air/fuel mixing
process will control the rate of combustion. This preparation of the
fuei will be governed by the turbulence and swirl in the cylinder.
tyn{4} estimated that approximately 40 percent of the heat release fram
the combustion of fuel comes fram this stage. Figure 10 shows the
diffusion burning process in a cylinder.

3.1.1.4 Combustion Tail Stage

This last stage of combustion is characterized by the cylinder
pressure and temperature falling as the expansion process continues.
The rate of combustion tails off due to the chemical kinetic effects as

-2]1=




the chemical reaction rate slows. In this stage, the reaction rate will
become the controlling factor instead of the air/fuel mixing process.
This stage is also characterized by diffusion combustion with a high
production and combustion of soot particles with a resultant high rate
of radiation heat transfer. This last stage of combustion can proceed
through the completion of the expansion stroke and can contribute upto
20 percent of the total heat release.“} Figure 11 represents a typical
heat release rate diagram showing the four stages of combustion.

3.2 Combustion Modeling

The cambustion process is often considered the most important
aspect of an internal combustion engine, but, at the same time, the
least understood and most complex. A mathematical model depicting
combustion would require good models of the fuel system to include the
injection/fuer. pump, the injector nozzles, and fuel lines.
Additionally, models of fuel atomization, vaporization, fuel/air mixing,
cylinder air motion, chemical kinetics and pre-mixed and diffusion
mixing would be required. A model as comprehensive as this has yet to
be deveoped. Spauldinguz} states that this type of “combustion
modeling is impossible.," He justifies this by pointing out that the
number of governing restraints and rules outnumber the degrees of
freedom and, in addition, the requirements of 1low cost, speed and
accuracy must also be met. Since the complexity of the real combustion
process is so overwhelming, substantial simplifying assumptions must be
made to obtain solutions.

PR
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3.2.1 Types of Models and Uses

Bracco{]'3 } categorized combustion models into three categories
based on their uses in examining different engine problems. The
categories are the =zero-dimensional (or thermodynamic) model, the
quasi-dimensional (or entrainment) model, and the multi-dimensional (or

detailed) model.

3.2.1.1 Zero-dimensional Model'll}

The zero-dimensional model is structured around a thermodynamic
analysis of the engine cylinder contents during the cycle. The
assumptions include one-dimensional flow, isentropic adiabatic flow
through nozzles simulating flow past valves, and unburned mixtures as
mixtures of air, fuel vapor and residual gases. Specific heats of the
gas mixture are modeled using polynomial functions of temperature.
Compression is assumed to be adiabatic. Combustion assumes
thermochemical equilibrium and progressive burning via mass elements.

The expansion process assumes themmochemical equilibrium.

Heat transfer is modeled using correlations between the Nusselt,
Prandtl. and Reynolds numbers from heat transfer in steady turbulent
flow over flat plates and pipes. These relationships are in the form
of:s

Nu = aRePPr®
where a, b, and ¢ are obtained from experimental data for a specific

engine.

ik,




The combustion process is generally modeled from an apparent heat
release or an experimentally obtained fuel burning rate. One of the
most widely used correlations is based on the Wiebe Function. In this
function, the fuel burned is expressed as a fraction of the total fuel
injected, {5}

B = 1 - expl-K,(t) F1*1))
where FB = fraction of fuel burned/total
injected
t = time fram ignition
Kl = shape factor for comb:.lstion curve
K, = combustion efficiency coefficient.

Another typical function form is the cosine function: {11}
X(©) = (/{1 ~ cos (0 - 8)/A86,]}
where X(6) = mass fraction burned at crank
angle ©
©, = crank angle at the start of
combustion
and\8,, = burn duration.

There are numerous other combustion models that utilize various
heat release patterns. Some replace the heat release curve with two
straight lines. In this type of combustion model, one line simulates
the rapid combustion of the bulk of the injected fuel and the other line
represents the slower combustion phase further down the expansion
stroke.

. T ‘.I - 3 casambin
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An empirical model developed by Whitehouse and Way!l4) is based on
elementary combustion principles. Fuel is assumed to be prepared for
combustion as a result of fuel-air mixing. The reaction rate calculates
the burn rate in the premixed stage of combustion. The preparation rate
becomes governing during the diffusion burning phase as the fuel is
assumed to burn as rapidly as it is prepared. (The Whitehouse and Way
model will be dealt with in detail in a later chapter.)

In general, thermodynamic combustion models are useful when
performing a design trade off or comparison analysis to evaluate the
effects of change in engine design and operation. Since, however, the
details of the combustion process are an input to the model, the results
can only indicate what will transpire if the engine burns in the
specified manner. These models cannot address the feasibility of the
engine operating in the prescribed manner because the details of the

burning process are not linked to the engine design and o;::ex:eu::i.on.{l5 }

3.2.1.2 Quasi-dimensional Model {11!

Quasi-dimensional models are also structured around a thermodynamic
analysis of the engine cylinder during the cycle., Many of the same
assumptions are utilized to describe the various portions of the process
as are used in the thermodynamic model. The combustion process, on the
other hand, is based on more fundamental physical quantities such as
turbulent intensity, turbulent mixing, jet characteristics in jet mixing

and the kinetics of the fuel-oxidation process.

25~




The quasi~dimensional models can be utilized for the same purposes
as the zero~dimensional models except that they can now be used where
changes in the combustion process can be a dominant factor. The major
drawback of the quasi-dimensional model is its inability to examine, in
detail, the interaction between fluid flow and engine geometry. {14}

3.2.1.3 Multi-dimensional Model(l1}

In a multi-dimensional model, the governing partial-differential
equations describing conservation of mass, momentum, energy and species,
and the sub-models describing turbulence, chemical kinetics, and etc.
are numerically solved subject to boundary conditions and other
restraints. These models have the potential for examining the
interaction between fluid flow and engine geometry that is lacking in
the quasi-dimensional model. The detailed model will predict engine
performance and emission characteristics from the first principles with
virtually no empirical relationships. Unfortunately, sglving the
relevant conservation equations in three~dimensional, time dependent
formulation, coupled with the state equations and sub-models leads to a
computer program that will tax even the most capable computer system.
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Chapter 4
THE TWO CYLINDER CYCLE COMBUSTION MODEL

Since the two cylinde: cycle reciprocating engine is a totally new
concept, combustion modeling can be even more difficult than for a
compression ignition engine., However, the approach taken models the
expansion cylinder of the new cycle after a diesel engine cylinder. The
beginning of the expansion stroke will simulate a diesel engine with its
piston at TDC with a charge of air. For this initial combustion model,
the air will be assumed to be contained within the cylinder, at
pressure, with no additional air added after expansion, as in the actual
new engine cycle,

4.1 Assugptions

The assumptions for this single zone combustion model are
essentially those previously mentioned for the thermodynamic type of
models.

a. The First Law of Thermodynamics is used to establish an energy
balance to determine the temperature at the end of each step.

b. The working fluid is treated as an ideal gas.

¢c. The system contents are homogeneous and of uniform temperature

and pressure,
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d. The changes in gas properties due to the rate of change of the
gas composition are considered to be negligible.

e. Combustion is treated as a reversible heat release process.

f. Combustion products are formed in the proportions according to
the law of perfect combustion.

g. No dissociation of the products of combustion occurs.

h. Only four gases are considered to be present and are varied as

required for perfect combustion.

i, The incoming air charge is assumed to be pure air plus a
fraction of the residual gases remaining in the cylinder,

4.2 Themmodvnamics of Internal Combustion Engines
4.2.1 Ideal Gas'l6!

The assumed thermally ideal gas obeys the state equation
pV = MRT
where p = pressure
V = volume
M = number of moles
R = universal gas constant
and T = temperature.

The specific gas constant, R, can be written in terms of R and M,
the molecular weight of the gas.
R= T?/u\,.
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If the mass of the gas, M, then the state equation can be written
as:

pvV = mRT.

The specific internal energy for an ideal gas can be represented as
a function of temperature:
u=£f(T
where u = specific internal energy
and £(T) = function of temperature dependent on
the gas.
If the function £(T) is expressed in the form of a limited power series,
then'17} ]
-
u=u + Lda“'l‘n
wher;“al to ag are constants which vary
depending on the gas

and u, = internal energy at absolute zero.

The specific heat at constant volume can be defined as:
Cv = (dq/d'l‘)v =(du/am .
Thus, following the same procedures as for the internal energy,

aboves (17,18}
LR
- 1
Cv = ZJ%’I“-
(=)
The specific enthalpy, h, for an ideal gas is given by:
h=u + R,
It follows that:{17/180
hs= h(T) = u°+Lan'In+R1‘.
nzt

-29-




At absolute zero, T=0:
v h=h,=u,.
P Therefore, for a perfect gas, the internal energy varies linearly with

¥ ' temperature as:

h-h°+cv'r+kr.

The specific heat at constant pressure, Cp, is defined by:

Cp = (dq/d'l?)p = (dh/d'r)p.
For a perfect gas:
CP = CV 4-?&
Now, enthalpy can be expressed by:
h= ho + Cp’l‘.

For thermodynamic processes with gases of constant composition and
specific heats undergoing state changes;
h, = u, = 0.
Then,
us= Cv'r;
hs= CPT;
""h=us= (Cp - CV)T = ET;
and Cp -G =R
Gas data are often given in temms of enthalpy vice internal energy.
The conventional form is:
h(T)/RT = (h - ho)/RT
sa,1+32'r+a3'r2+a4'1'3+65'1‘4.
and the internal energy is expressed as:
u(T)/RT = (al-].) +aT + a3'r2 + a4'r3 + as'r4.

-30-




The values for the polynomial coefficients, a, to ag are provided in

Table 2. Other formulations for the calculation of enthalpy and
{5,26,27}

specific heat are available in the literature.

Table 2:  Polwnamial Cosfficien
Range; 500 - 3000 Degrees Kelvin

4 2 & 3 ]
(302 3.0959 2.73114E-03 -7.88542E~07 8.66002E-11 0.0
HZO 3.74292 5.65590E-04 4.95240E~08 -1.81802E-11 0.0
02 3.25304 6 .52350E-04 -1.49524E~07 1.53897E-11 0.0
N2 3.34435 2.94260E-04 1,95300E-09 -6.57470E-12 0.0
CBHIB -0.71993 4.6426E-02 -1.68B 85E~05 -2.67009E-09 0.0
C3H8 1.13711 1.4553.252-02 -2.95876E~06 0.0 0.0

4.2.2 W..Gas_mm:ssue}

Mixtures of gases obey the following.

a. The gas mixture as a whole obeys the equation of state,
PV = MRT, where M is the total number of moles of all species.

b. The total pressure of the mixture is equal to the sum of the
pressures which the individual components/species exert.

¢. The internal energy, enthalpy and entropy of the mixture equals

the sum of the internal energies, enthalpies and entropies which each

individual component/species would have if it separately occupied the
_31-
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]
entire volume of the mixture at the same temperature. )
]
Thus, for mixtures of ideal gases the mole fraction is given by: ) j
X; = Mi/M :
where Mi = moles of a specie

and M = total number of moles.

Then,

zxi = 1.00
Enthalpy is given by:

B=2Mh =MZxh,.
Internal energy is given by:

U= ZMiui = M Z xiuio
Specific Heats are given by:

cp =3 xiCpl

G = BxGe
4.2.3 The Pirst Law of Thernodynamics 1’

The emphasis of this model is the closed portion of the cycle.

Therefore, the First Law of Thermodynamic for closed systems is simply:

dQ - dw = du'
where dQ = heat enerqgy transfer

dW = work enerqy transfer
du' = change in internal energy.
The internal energy is defined by:

1
P Y

U'=sU+KE + FE
where U = the intrinsic internal energy
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KE = kinetic energy

PE = potential energy.

For a closed system, we can assume that PE = KE = 0. Therefore,
aQ - dW =du
vhere U = M I x;u;
M = total number of moles
x; = mole fraction of gas i

u; = specific internal energy of gas i.

For non-reacting closed systems, we can write:
Q-dWw=da
where aW = pdV = ( X x,plaV
and du = M(.‘:xiui)o

For a reacting closed system, we can expand this to:
aQ - pdv = (U, - Uy + Uy(T = U(T)

op P
where (Uop - Uor) = AUO

A Uo = heat of reaction
UP(T) = energy of products as a
function of time

U (T) = energy of reactants as a

function of temperature.

4.3 Heat Transfer from the gas to the Cylinder

To be able to balance the energy in a real system, the heat
transfer from the combustion gas to the walls of the cylinder must be
considered. Two basic equations are generally accep.ed for use in cycle

=33~
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calculations. These are the correlations developed by Annand and
Woschni. The relationship by Woschniug} is based upon a forced
convection model.
q/lin-c._;d"0 '2p° . 8'l‘g'o -053 (Clvp+(c.2 (p=p,) VT'/p'V") 0.8¢p g-'rw)
where ¢ s &, and C4 = constants

A = area

D = cylinder bore

p = pressure

Tg = mean gas temperature

'rw = wall temperature

Vp = piston velocity

Py = motoring pressure

p' = trapped pressure

V' = trapped volume

T' = trapped temperature.
Although Woschni's expression is readily accepted, it does not
separately distinguish between convection and radiation.

The Annand equation is also largely based on turbulent convection.
Unlike the Woschnmi correlation, Annand claims that the Reynolds number
is the major parameter affecting convection. Convection is the first
term in his equation. The second term in Annand's equation is a
radiation term assuming grey body radiation. Thus: {20}

o/A = a(k/D) (Re)b(Tg-ﬂg,) + c(rgt-wh)
where g = heat transfer rate

A = area

U UL WY
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a,b,c = constants
k = thermal conductivity
D = bore
Re = Reynolds Number = pvbp/u
p = density
Vp = piston velocity
u = viscosity
Tg = temperature of gas (mean)
Tw = temperature of wall.

The range of values for Annand's constants are:

for a four stroke engine:

a= 0,26

b =0.75 £ 0.15

c=3.88+1.39x10°8  g/am?kd
for a two stroke engine:

a=0,26

b=0.64 £0.10

¢ =3.03 £1.06 x 1078

Since Annand's equation separates the convective term from the
radiation term, it is believed that the Annand correlation is better
suited to the new cycle calculations.

4.4 The Conbustion Model




In the process ot heat release from combustion, both physical and
chemical effects are involved. Liquid fuel injected into an engine
must be heated, vaporized, and mixed with oxygen in the preparation
process prior to combustion. Once the fuel is prepared, it may then
burn at a rate controlled by chemical kinetics. It has been
demonstrated that the time required for combustion of the prepared fuel
is negligible as compared to the preparation time.

At the beginning of the burning period, chemical kinetics are
important due to the low temperatures. When fuel is first injected into
a cylinder of a diesel engine, the temperature is generally such that
rapid burning will not occur. Additionally, the heat transferred to the
incoming fuel causes the temperature to drop in the cylinder. As the
temperature rises in the cylinder, the combustion rate rises, thus
increasing the temperature. The heat release rate continues to rise
until the lack of prepared fuel becomes the controlling factor. Wwhen
the excess prepared fuel is depleted, combustion will proceed at the
rate of fuel preparation. Figure 12 represents the effects of
preparation rate and reaction rate in premixed burning as a function of

crank angle.

4.4.1 Preparation of Fuel

After injection, the fuel is physically prepared for combustion.

As mentioned before, this process involves the atamization, vaporization

and mixing of the fuel with air. The rate of preparation can be assumed

to be proportional to the total surface area of the fuel spray droplets.

If all the droplets are assumed to be of identical size, then it
-36-
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follows: {7+14,21}
M; = np~ Doz/ 6
Mu = nperz
where Mi = Mass of fuel injected
M, = Mass of fuel unburned
n = number of fuel droplets
p = fuel droplet density
D, = Initial droplet diameter
D = Droplet diameter.
The total area

Area = n2D? = n (64 /npr) /3
3,13 2/3
Area = (6M;/npD,”) (6M /p7)
- e 1/3y 2/3
Area 6Mi Mu /pDO.
Assuming that the density, p, and initial diameter, D,r are constant,

then the
1/3,, 2/3
Area a Mi 3Mu .

Allowing for the effect of oxygen availability on the mixing of the
fuel, the preparation rate, PR, can be written as:
IR = mil-x%xpozm
where x = empirical constant
m = empirical constant
Py = partial pressure of oxygen
K = constant,
The constant K is a function of the characteristics of fuel injection,
air movement and combustion chamber shape. Typical values for four

-37-
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stroke engine are: {14}

K = 0,008 - 0.020
X =2/3
m= 0.4,

4.4.2 Reaction of Fuel

Since diesel fuel is not a pure substance, it is impossible to
ascertain the exact chemical equations involved since the actual
campounds in the fuel are unknown. The temperatures that are available
from experimeni:s are only average cylinder temperatures. With these
approximations/estimations, the equations for reaction rate are highly
empirical. The degree of approximation involved may be justified due to
the short time period during which chemical kinetics is of importance.
Also, the total fuel that is burned is equal to the amount of fuel that
is prepared., The reaction rate equation that was proposed by Whitehouse
and Way {7,14,211 44 based on the Arrhenius equation.

R= (K'Bp)/ (WA [(PR-R x expl-act/m
where R = reaction rate per degree crank angle
K' = empirical constant
act = empirical constant
P02 = partial pressure of oxygen
PR = preparation rate
N = engine speed in rpm
T = cylinder temperature.
'ﬁxe effect of the ignition delay period is incorporated in the Arrhenius
type expression exp(~act/T). Typical values of K' and act are :

-38
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act = 1.4 x 104
K = 1.2 x 1010 for two stroke engines

K* = 65 x 1010 for four stroke engines
4.5 Yerification of the Model

The model was converted top computer code using TRS-80 ‘Nbdel 111

Disk Basic. The program listing is presented in Appendix B.

In an effort to set the empirical coefficients, the average value
was used for all coefficients that had a range of values for four stroke
engines. The program was run and compared to the data obtained by
Remley!22} in actual engine testing in the Sloan Automotive Laboratory.
Figure 13 represents the pressure versus volume curve for the model and
for the engine run by Remley. Appendix A provides specifications of the

test engine.
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SELECTION OF FUEL INJECTION POINT

In order to obtain the maximum work and highest efficiency from the
new two cylinder cycle, the time of fuel injection should be optimized.
To obtain this optimum, a number of cycles were run on the computer.

5.1 Selection of the Model Coefficients

The model was run assuming the expansion cylinder at TDC with an
air charge at a temperature and pressure of 1090°K and 10 atmospheres
while the engine speed of 850 rpm and air/fuel ratio were held constant.
The selected fuel .was C8518 (iso-octane) with a lower heating value of
4.2 x 107 joules/kilogram and a residual air fraction of 0.05.

The model was run several times to obtain a value of K in the
equation:
PR = mi(l-X)Mux 02
The values of x and m were held constant at 2/3 and 0.04, respectively,
as the values used for four-stroke diesel engines. When searching for a
value of K, a diffusion combustion period of 70 - 120 degrees of crank
angle was sought. This was found through several iterations to occur at

a value of K = 0,012,




The values of constants for the reaction rate equation:
R= (K'Pozlmo'slexp(-act/'r)/(PR-R)dx,

were selected as the values for four-stroke diesel engines.

with this input data and selection of constants, the model yields a
heat release rate curve which closely resembles that described by
Ricardo, Lyn and Whitehouse et al, see figure 14. The premixed burning
phase yields approximately 45 percent of the heat release, the diffusion
controlled burning phase yields approximately 45 percent of the heat
release with the tail of combustion providing the remaining 10 percent.

5.2 Optimizing Fuel Iniecti

Intuitively, the maximum work and highest efficiency would be
expected with fuel injection and combustion occuring at TC, or
immediately thereafter. This, however, does not appear to be the case
when the data is evaluated. See figures 15 through 21, While the fuel
injection is varied fram 180 (TDC) to 205 degrees crank angle, with an
injection period of 20 degrees, the thermal efficiency rises. For fuel
injection occurring from 180 to 195 degrees, the temperature at 360
degrees (BDC) is not sufficient to heat the regenerator matrix to a
temperature which will pre-heat the incoming air charge to 1090 degrees
Relvin as specified by the input data. For fuel injection occuring at
205 degrees, and later, incomplete combustion will result.

From this appi:oach, the optimum point of fuel injection occurs at

200 degrees crank angle for a fuel injection period of 20 degrees.




-

When the fuel injection period is reduced to 10 degrees, a similar
pattern is observed. A fuel injection point on, or before, 200 degrees
results in the cylinder gas temperature dropping too low to support
sufficient air charge pre-heat. Fuel injection on, or after, 210
degrees results in incomplete combustion. See figures 22 through 24.
In this case, the optimum point of fuel injection occurs at 205 ‘degrees.
The thermal efficiency for this case is higher that the case of a 20
degree injection period. Also, the specific fuel consumption is lower

in the case of 10 degree injection as compared to 20 degree injection.

Through a similar analysis, the case of an air/fuel ratio of 25
yields an optimum fuel injection point of 195 degrees crank angle for a
period of 20 degrees. For this air/fuel ratio, the value of K in the
preparation rate equation was selected as 0.018 to achieve a similar

heat release rate pattern.
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COMMENTS AND RECOMMENDATIONS

As can be readily seen, the output from this type of thermodynamic
model is dependent on the value of the empirical coefficients. The
characteristics of the heat release rate curve will shift as a function
of air/fuel ratio, temperature, pressure and engine speed. Therefore,
only a comparison of results fram a defined heat release should be used
for qualitative comparison analysis.

Since this computer model was written for a personal computer, the
time required for one run is excessively long for a detailed comparison
analysis. The run time for one run with five degree increments is
approximately 1 hour and 20 minutes. A motoring analysis (no
combustion) requires approxin\étely 15 minutes. The amount of time
required in the combustion iteration process is the difference between
the two. These times were obtained when running the program with no
remark statements and elimination of all unnecessary spaces in the
program. Undoubtedly, the efficiency of the program can be somewhat
increased by utilizing some clever programming techniques. However, the
use of a small computer strictly dedicated to a comparison analysis with
crank angle increments of one or two degrees can occupy the machine for

an inordinate period of time,
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6.1 Recommendations

This single zone model allows for cycle studies, However, a
problem that must be explored is the formation of soot and gaseous
pollutants. This can be accomplished by expanding the model to a two or
four zone model. (23,24} During this model expansion, the effect of
chemical kinetics should be further examined to display a more realistic
combustion process. The values of the coefficients for the polynomial
expression of enthalpy for the other products of combustion are readily
available, 17,18}

The effects of heat transfer from the system may be more
appropriately modeled by the use of the widely accepted Woschni
cotrelations.ug} The use of Annand's correlation, however, does allow

for the separation of convection and radiation.

The effects of mixing of the air charge with the fuel must be
further explored to determine the effects on combustion intensity and

efficiency, {25!

The use of a larger computer system would be most beneficial in a
comparison analysis., Single runs can be easily done on a personal
computer system, however, many runs using small crank angle increments
are best, although more costly, performed on a main frame system capable
of performing numerous simultaneous calculations.

Lastly, to obtain realistic coefficients for the empirical
constants in the preparation and reaction rate equations, experiments
using a rapid compression machine are considered appropriate. This

-44-
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would provide for realistic data with minimum cost.
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RUN: CARMICKAEL

INPUT DATA:

CYLINDER BORE

n STROKE =

ENGINE SPEED
ENGINE COMPR
' . AIR / FUEL RATIO
. : TRAPPED PRESSURE
. TRAPPED TEMPERATURE =
RESIDUAL AIR FRACTION
FUEL SELECTED FOR THIS ANALYSIS
LOWER HEATING VALUE = -4.2E+07 JOULES/KG

WITH A

STCICHIOMETRIC AIR / FUEL RATIO =
FUEL 7 AIR EQUIVALENCE (PHI)

S P
} SYEEIIIA PRI
e

Ceww -

o

i=3

= .3725
3725 METERS
CONNECTING ROD LENGT
850 RPM

I0N RATIO = S

20

Wy >

DIESEL ENGINE COMBUSTION CYCLE

ENGINE - NMOTORING

METERS

.745 METERS

1.0132FE+0% N/M*2

2090 DEG KELVIN
.05

C8H1I8 (IS0 OCTANE)

15,1151

= .S03836
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DIESEL ENGINE COMBUSTION

RUN: CARMICHAEL ENGINE
INPUT DATA:

CYLINDER BORE = .3725 METERS
STROKE «3725 METERS
CONNECTING ROD LENGTH
ENGINE SPEED 350 RPM
ENGINE COMPRESSION RATIO

AIR /7 FUEL RATIO 30
TRAPPED PRESSURE 1.0132SE+06
TRAPPED TEMPERATURE 1090 DEG

RESIDUAL AIR FRACTION .05
FUEL SELECTED FOR THIS ANALYSIS
WITH A LOWER HEATING VALUE
STOICHIOMETRIC AIR / FUEL RATIO
FUEL /7 AIR EQUIVALENCE (PHD)

=

745

S

CYCLE

METERS

N/Mt2
KELVIN

15.1151
.503836

C8H18 (ISO OCTANED
-4.2E+07 JOULES/KG
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DIESEL ENGINE COMBUSTION CYCLE -

RUN: CARMICHAEL ENGINE

INPUT DATAC

CYLINDER BORE =
STROKE = .3725 METERS
CONNECTING ROD LENGTH =
ENGINE SPEED = 850 RPM
ENGINE COMPRESSION RATIO =
AIR s/ FUEL RATIO = 30

TRAPPED PRESSURE

.372S METERS

.74% METERS -

S

1.01325E+06 N/MT2

TRAPPED TEMPERATURE = 1080 DEG KELVIN

RESIDUAL AIR FRACTION = .05
FUEL SELECTED FOR THIS ANALYSIS
WITH A LOWER HEATING VALUE

STOICHIOMETRIC AIR / FUEL RATIO
FUEL 7/ AIR EQUIVALENCE (PHI) =

C8H18 (IS0 OCTANE)
-4 ,2E+07 JOULES/K
= 15.1151

.503836
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DIESEL ENGINE COMBUSTION CYCLE

RUN: CARMICHAEL ENGINE

INPUT DATA:
CYLINDER BORE = .3725 METERS

ROKE = .3725 METERS

CONNECTING RCD LENGTH = .745 METERS

ENGINE SPEED = 850 RPHM
ENGINE COMPRESSION RATIO =
AIR / FUEL RATIO = 30

S

TRAPPED PRESSURE = 1,01325E+06 N/Mt2
TRAPPED TEMPERATURE = 1090 DEG KELVIN
RESIDUAL AIR FRACTION = .05

FUEL SELECTED FOR THIS ANALYSIS
WITH A LOWER HEATING VALUE = -4.2E+07 JOULES/KG

STCICHIOMETRIC AIR / FUEL RATIO
FUEL /7 AIR EQUIVALENCE (PHI) =

= 15.1131
.50383¢%

C8H18 (ISO OCTANBE)
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DIESEL ENGINE COMBUSTICN CYCLE

[
g
t

RUN: CARMICHAEZL ENGINE
INPUT DATA:
CYLINDER BORE = .3725 METERS
STROKE = .372S METZRS
CONNECTING ROD LENGTH = .745 METERS
EZNGINE SPEED = &S50 RPM
, ENGINE COMPRESSION RATI S
AIR / FUEL RATIO = 30
: TRAPPED PRESSURE 1.01325E+06 N/MT2
TRAPPED TEMPERATURE = 1090 DEG KELVIN
REsSIDUAL AIR FRACTION = .03

FUEL SELECTED FOR THIS ANALYSIS = C8H18 (ISO OCTANE)
WITH A LOWER HEATING VALUE = -4.2E+07 JOULES/XG

STOICHIOMETRIC AIR / FUEL RATIO = 15.1151
FUEL s AIR EGQUIVALENCE (PHI> = .503836

e mmpm e ey nm= P g wmm A v e
Co¥ISZhIION Tma Vs -’ e tail LI 105 Wlmi vl

-—-\—Ov-‘) f--————r, }

[ { VRPN W)

3 =7
: s
- ) 3
i 3
3 d
)= s
3 =7
- .
; ta 2.
£ 358 VIR 2z
e l20ad IS YR “a
z .= S5 =3 ‘A .
d s o St 18 i
k S.8l L3AT.CE
At -
el
4, 72:
&,
&o 3
=
Vel Zem
webae2l
S0 62327
Pal=bd-M
Y- -7
FV 2.92.74
1 I.3iE3
b . =W -l am
. S EESY w 7,205 S
S ey St iesvas ie
ERE A 2079 TI7EE
o) Se9lioio Nl
c Ge ecSBER=Cd
=
c
o i
e ddbd
. AeE. - L
cedia.d Te4di3me
el feltzaeT V)
43 :4::‘«,44 & SETEIY
. vi3se eogtel e wwi LI
£3R3544 i,0.01% 2.2303Tid
ot i b e :
s cvaiIwtd Ledus - L.ITw3iE=5 X
a, mmge =222
o et
- sEa= T ¢ s =
<ie Valk Y es FIUd REY R b4 N
SR e e een VI TR 2 eapntERD
. FEALRERZ S 44 wllni wo “wl 2
..
.
i
- .
) ERIpyet
" = - .
, Figure 19
‘ -69-
.
P
| - e




DIESEL ENGINE COMBUSTION CYCLE

RUN: CARMICHAEL ENGINE
INPUT DATA:
CYLINDER BORE = ,3725 METERS
’ STROKE = .3725 METERS
CONNECTING ROD LENGTH = .745 METERS
. ENGINE SPEED = 850 RPM
ENGINE COMPRESSION RATIC = S
. AIR / FUEL RATIO 30
TRAPPED PRESSURE = 1.01325E+06 N/M12
s TRAPPED TEMPERATURE = 1090 DEG KELVIN
1 RESIDUAL AIR FRACTION = .05

FUEL SELECTED FOR THIS ANALYSIS = C8H18 (ISO OCTANE)
WITH A LOWER REATING VALUE = -4.2E+07 JOULES/KG

STOICHIOMETRIC AIR / FUEL RATIO = 15.1151
FUEL 7 AIR EQUIVALENCE (PHI)> = .5038356
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DIESEL ENGINE COMBUSTION CYCLE
RUN: CARMICHASL ENGINE
INPUT DATA:
CYLINDER BORE = .3725 METERS -
STROKE = .372%5 MITERS
CONNECTING RCOD LENGTH = .745 METERS
ENSINE SPEED = 850 RPM
ENGINE COMPRESSION RATIO = S
: AIR / FUEL RATIO = 30
TRAPPED PRESSURE = 1.01325E+06 N/Mt2 -
TRAPPED TEMPERATURE = 1090 DEG KELVIN
RESIDUAL AIR FRACTION = .0S
¢ FUEL SELECTED FOR THIS ANALYSIS = C8H18 (ISO OCTANE) .
[ - WITH A LOWER HEATING VALUE = -4.2E+07 JOULES/KG '
i . STOICHIOMETRIC AIR / FUEL RATIO = 15.1151 o
g FUEL 7 AIR EQUIVALENCE (PHI) = .503836 ‘
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DIESEL EINGINE CCMBUSTION CYCLE -

RUN: CARMICHAEL ENGINE
INPUT DATA:
CYLINDER 2B0RE = .3725 METERS
STROKE = .3725 METERS
CCNNECTING ROD LIEINGTH = .74
ENGINE SPEED = 8S0 RPM
ENGINE CCOMPRESSICN RATIO = S
AIR / FUEL RATIO = 30
TRAPPED PRESSURE 1.01325E+06 N/M*2
TRAPPED TEMPERATURE = 1030 DEG KELVIN
RESIDUAL AIR FRACTION = .0S
FUEL SELECTED FOR THIS ANALYSIS C3H18 (ISO OCTANE)
WITH A LOWER HEATING VALUE = -4.2E+07 JOULES/KG
STOICKHIOMETRIC AIR / FUEL RATIO = 15.1131
FUEL 7/ AIR EQUIVALENCE (PHI) = .S03836
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DIESEL ENGINE COMBUSTION CYCLE

RUN: CARMICHAEL ENGINE
INPUT DATA:
CYLINDER BORE = .372S5 METERS
STROKE = ,372%5 METERS
CONNECTING ROD LENGTH = .745 METERS
ENGINE SPEED = &S0 RPM
ENGINE COMPRESSION RATIO
AIR / FUEL RATIO 20
TRAPPED PRESSURE = 1.0132CE+06&6 N/Mt2
TRAPPED TEMPERATURE = 1090 DEG KELWVIN
RESIDUAL AIR FRACTICN = .CS
FUEL SELECTED FOR THIS ANALYSIS C8H18 (ISO OCTANE)
WITH A LOWER HEATING VALUE = -4.2E+07 JOULES/KG
STOICHIOMETRIC AIR / FUEL RATIO = 15.1151
FUEL 7/ AIR EQUIVALENCE (PHI) = .S503836
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L DIESEL ENGINE COMBUSTION CYCLE

RUN: CARMICHAEL ENGINE

INPUT DATA:
CYLINDER BORE = .3725 METERS
STROKE = .3725 METERS .
I CONNECTING ROD LENGTH = .745 METERS
! ENGINE SPEED = 850 RPN 1
o ENGINE COMPRESSION RATIO = S 3
. AIR / FUEL RATIO 30
- : TRAPPED PRESSURE = 1.0132SE+06 N/Mt2

TRAPPED TEMPERATURE = 1090 DEG KELVIN : .
RESIDUAL AIR FRACTION = .05
FUEL SELECTED FOR THIS ANALYSIS C8H18 (ISO DCTANED
WITH A LOWER HEATING VALUE -4.2E+07 JOULES/KG
STOICHIOMETRIC AIR / FUEL RATIO = 1%5.1151
FUEL / AIR EQUIVALENCE (PHI) = .S03838%
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Appendix A
Specifications of Test Remley Engine'

Type of Engine

Bore

Stroke

Cylinder Displacement

Connecting Rod Length
Compression Ratio

Number of Campression Rings
Number of Oil Rings

Number of Inlet Valves

Number of Exhaust Valves

Valve Diameter

Valve Lift

Inlet Valve Timing open/close
Exhaust Valve Timing open/close
Diameter of Intake Manifold Pipe
Diameter of Exhaust Manifold Pipe

22}

Four Stroke

4.0 inches

2.5 inches
31.41 cubic inches
6.25 inches
14.3 : 1

2

1

2 .

2

1.28 inches
0.280 inches
15°BTDC/ 50 °ABDC
50°BBDC/15°ATDC
2.00 inches
1.60 inches

h ‘




'!l o, ) ".

Engine Speed in RPM
Inlet Pressure

Exhaust Pressure

' Inlet Air Temperature
Air to Fuel Ratio

IMEP

Start of Injection
Ignition Delay

Period of Fuel Injection

Data Collected from Test RunZ22’

1450

13.5 inches Hg gage
13.4 inches Hg gage
186° F

25.38

88.1 psi

12.5° BTOC

5.5°

17.5°




computer code easier to understand. Since the program takes a
considerable length of time to run, it is recommended that the remark
statements be deleted before running. Samples of output are presented

in fiqures 15 to 24.
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Appendix B ‘
———ed]
The computer program is written in TRS-80 Model III Disk Basic and 1
consists of a main program and nine subroutines., The program listing ,
has numerous remarks statements inserted to make the algorithm and :
- 4
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